Problem or Process?: Surge may be byproduct of ‘displacement on demand’ - Transmission Digest

Problem or Process?: Surge may be byproduct of ‘displacement on demand’

Recently a 2006 Chevrolet Impala came into one of our retail locations with a surge complaint while cruising on the highway between 60-65 mph. I drove the vehicle with the customer to verify the concern and was able to duplicate the circumstances in which the vehicle acted up. While watching the tachometer I noted that there was a noticeable 150-200 rpm surge while TCC was applied. It felt like a typical TCC surge as a result from a leak in the TCC regulator circuit, so additional diagnostic steps were in order. We discussed this with the customer, and he authorized the additional time. At this point I was fairly convinced that we were going to need to go inside the unit.

Problem or Process?: Surge may be byproduct of ‘displacement on demand’

R&R Tech

Author: Chris Adams
Subject Matter: Surge complaint
Unit: 2006 Chevrolet Impala 5.3L V8 4T65-E

R&R Tech

  • Author: Chris Adams
  • Subject Matter: Surge complaint
  • Unit: 2006 Chevrolet Impala 5.3L V8 4T65-E

Recently a 2006 Chevrolet Impala came into one of our retail locations with a surge complaint while cruising on the highway between 60-65 mph. I drove the vehicle with the customer to verify the concern and was able to duplicate the circumstances in which the vehicle acted up. While watching the tachometer I noted that there was a noticeable 150-200 rpm surge while TCC was applied. It felt like a typical TCC surge as a result from a leak in the TCC regulator circuit, so additional diagnostic steps were in order. We discussed this with the customer, and he authorized the additional time. At this point I was fairly convinced that we were going to need to go inside the unit.

We always start our evaluation with some pretty basic steps: check fluid level and condition, scan for codes, perform a battery and charging system test, and an undercar inspection. At this point everything was looking good, fluid was full and clean, there were no DTCs for the engine or transmission, and the battery and charging system test results came back error-free, and there were no obvious problems shown with the visual inspection.

At this point we proceeded to take the vehicle out for a road test with the scan tool connected so that I could monitor the PIDS for the TCC command while looking at the TCC duty cycle as the surge was occurring. It appeared that the PCM was commanding the change, although it was very erratic. Given this information, I now had to try to figure out what PCM inputs could be causing this to happen.

After a few considerations, I turned my attention to the TPS signal. A Snap-on Verus Pro scan tool detected a PID, “CALC TPS %,” and while monitoring this value, I saw what was making the PCM vary the duty-cycle and therefore causing the TCC surge. There was a noticeable jump in the TPS signal when the surge was happening (Figure 1). As this is a “drive by wire” system, I also looked at the APP signal and it was smooth. Further testing was now in order.

After looking over the circuit wiring diagram and connector view from GM Service Information, and also checking for pertinent TSBs, I hooked up the scope right at the throttle body to TPS1 and TPS2. At a throttle position just a little off idle, I could see the glitch in the signal in both of the inputs (Figure 2). After verifying there were no ground issues, I was leaning toward recommending that the throttle body be replaced. One last thing I needed to check was if there were any updates to the PCM calibration. Checking the current calibration against the GM TDS website, I noted that there were several updates to the calibration, although none of them relative toward the issue that I was having.

My recommendations for repair included a pan inspection & fluid/filter change, a replacement AC Delco throttle body, and reprogramming of the PCM. All repairs were authorized by the customer and we proceeded with the repair. After my recommended repairs, drivability was normal, data signals were smooth, and the TCC surge was gone. The vehicle was then returned to the customer. Another one done, or so I thought.

Unfortunately, two days after the vehicle was returned to the customer, he returned with the dreaded, “It’s still doing the same thing.” I grabbed the scan tool and went for a ride with him, and this time it took quite a while for him to get the vehicle to act up and it was not a repeated surge like it was before. However, under just the right set of circumstances you could see the tach rise up by about 50 RPM. This little RPM flare would only happen at very light loads. While I could see the duty-cycle command change when this happened (Figure 3), I could find no reason for why it happened as the TPS signal was smooth.

I then recorded all the transmission data so I could go back and look at it more in depth, to no avail. We again went for another road test while I was looking at the engine side of the data and happened to catch something changing when the RPM flare occurred. This particular vehicle has the “DOD System” (Displacement On Demand) where under light load conditions it can deactivate cylinders 1 and 7 on the left bank and cylinders 4 and 6 on the right bank at cruising speed. On the scan tool there is a PID called “Cyl deact system command” that will either show V8 or V4 and this is where I saw the change: Every time that the PCM commanded a change in state from either 8Cyl mode to 4Cyl mode or vice versa, there was a quick dip in the TCC duty-cycle command (figure 3).

It was more noticeable from V8 to V4 because of the light load, when going from V4 to V8 there was an increase in load that triggers the change in state and the small flare was not as noticeable. After verifying operation on another like vehicle, I have to conclude that this is a normal operation and just a byproduct of the change in state from V8 to V4 mode and probably programmed into the software to make sure the transition is smooth so the owners do not notice a bump or jerk during this transition. Because I am not a GM engineer, this statement is just my opinion. I have never seen anything in print to 100% verify.

Chris Adams started with Certified in 1986 as an R&R technician. He has an Associate Degree in Automotive Technology from SCC in Milford, NE. He also holds the ASE master tech with the L1 certification. Currently he is our diagnostic trainer and is responsible for keeping our diagnostic techs at the retail locations at the top of their field, and keeping current with all the latest trends and tools in our industry. Chris also works closely with the technical department at our remanufacturing plant and helps coordinate our fleet of research-and-development vehicles for testing.

You May Also Like

Dealing with the increasingly common pin-fit problem

I want to talk a little bit about a common diagnostic misstep or overlooked problem that is prevalent in the automotive repair industry and seems to be on the rise. Pin-fit or tension can deal us a fit sometimes (pun intended), especially if we do not have the proper tools to determine if this mode

RR-Tech-September-FIG-1-1400

I want to talk a little bit about a common diagnostic misstep or overlooked problem that is prevalent in the automotive repair industry and seems to be on the rise. Pin-fit or tension can deal us a fit sometimes (pun intended), especially if we do not have the proper tools to determine if this mode of failure might be the cause. I have a couple of case studies to share that I have seen recently, and will share some testing protocols that I have used over the years to attempt to correctly diagnose a related issue or a code. 

Watch: Replacing a transmission and components

Dave Hritsko and the team have already removed a full transmission in a previous video. This time, see an in-depth explanation of the parts, components, and steps in how they make the upgrade with a remanufactured transmission along with new aftermarket components with the help of students from Ohio Technical College. Related Articles – Can

Removing-a-Transmission-with-Dave-from-Transtar-1400
Watch: How to remove a transmission

Watch Dave Hritsko from Transtar and team members from Ohio Technical College as they remove an old transmission and replace it with a newly remanufactured transmission. Related Articles – Road to AAPEX season 2, ep. 9: The roads that connect us – Watch: CVT modules and programming – Watch: CVT fluid diagnostics

Back to square one: When a transmission replacement doesn’t fix the problem

The subject of this article is a 2002 Ford Ranger with a 3.0L V6 engine and 5R44E transmission. There were 191,622 miles on the vehicle when it arrived at our shop. The owner said that the transmission was not shifting correctly and the OD lamp was flashing. Related Articles – Back with force: ATSG is

RRfeature-1400
The technician’s duty to the customer

I want to talk about some of the recent trends of particular cars and trucks that we see showing up at repair shops for work to be done. It seems to be a perfect storm of high used car prices, lack of new car inventory, and a bit of economic uncertainty that brings us to

rr-feature-1400

Other Posts

Tips for success with the GM transmission fast learn process

This article is about failure, something we all experience from time to time. If you are attempting to perform a fast learn process on a GM eight-, nine-, or 10-speed transmission, you may have that temporary feeling of failure, as this process can bring on frustration quickly. Let’s talk about what the fast learn process

tascFeaturefast-1400
Diving into electrical testing and wiring with the 948TE

We had a 2014 Jeep Cherokee come into our Bellevue, Neb. facility with a transmission that would not shift. This all-wheel drive vehicle was equipped with a 3.2L engine and a 948TE nine-speed transmission. Related Articles – Top 20 Tools and Products: The Winners – Performance supplier listings 2024 – Shift Pointers: What to do

RR-Tech-June-FIG-1-1400
American Powertrain offers Tremec TR-4050 kit for Chevy/GMC trucks

American Powertrain now offers a Tremec 4×2 TR-4050 five-speed Pro-Fit HD manual transmission kit designed for 1988-98 Chevy/GMC OBS light- and medium-duty trucks. Related Articles – Transtar to offer recycled engines – Sonnax introduces GM 6L80, 6L90 output planet saver kits – Alto introduces filters for GM 6L series The Chevy/GMC OBS 4×2 kit includes

American-Powertrain-1400
TransTec introduces stator sleeve tool kit

TransTec has introduced a new Stator Sleeve Tool Kit, which allows users to remove and replace worn-out GM stator sleeves, allowing them to rebuild the stator support instead of purchasing an aftermarket replacement.   Each kit includes a removal tool and an instruction sheet. Each kit also comes with TransTec’s new replacement sleeves, one of

TransTec-replacement-sleeves-1400