Hydraulic Fundamentals: AFL/Solenoid Modulator Valves - Transmission Digest

Hydraulic Fundamentals: AFL/Solenoid Modulator Valves

Knowing your transmission’s hydraulic circuit — and solenoid circuits in particular — can be very helpful when identifying the underlying cause.

An understanding of hydraulics is essential for properly diagnosing and repairing transmission problems. This article is one of a series by Sonnax exploring how valves and hydraulic circuits work and what results when they quit functioning correctly. 

Solenoids need reliable oil supply to function correctly. The valves responsible for regulating oil supply to the solenoids are referred to as actuator feed limit (AFL) valves, solenoid modulator or solenoid regulator valves, depending on the manufacturer. Correct AFL valve function is critical for shift operation and feel. A worn or stuck valve can lead to solenoid codes, wrong gear starts, clutch/band failure and harsh or soft shifts.

To understand the critical nature of AFL valves, it is beneficial to understand general solenoid function, which is explored in previous articles in the Hydraulics Fundamentals series and other Sonnax tech articles, such as “Flow Control: How Solenoid Design Influences Clutch Circuits.”

Broadly speaking, solenoids control shifts and shift timing by routing or modulating oil through the valve body to the various clutch circuits, and apply and release components. Flooding with or depriving the solenoids of oil may lead to problems with shifts, shift timing, solenoid codes and malfunction, slipping, flares and wrong gear starts.

AFL valves are typically fed line pressure and output a regulated AFL pressure that is routed to the balance end of the valve through an orifice. In GM 4L60-E and 4L80-E transmissions (Figure 1), line pressure is regulated at approximately 115 psi and fed to the shift solenoids, pressure control solenoid, TCC solenoid, 3-2 control solenoid and the 2-3 shift valve lineup. 

Figure 1 — GM 4L60-E AFL Valve

The large reaction area on the spring end of the valve results in side-loading, making the bore especially susceptible to wear. A worn or stuck valve can cause erratic pressures, restrict oil to the solenoids or flood them, depending on where the valve is worn or stuck. Often in the 4L60E and 4L80E, worn AFL bores result in low actuator feed and line pressures. The bore should be addressed to eliminate wear, as leakage results in flooded or starved solenoid feed and ultimately a loss of line pressure. Loss of line pressure can overwork pumps, and, because of hydraulic circuitry, cause 1870 or TCC codes.

Ford’s 6F35 is known for solenoid regulator valve issues as well. Just as in the 4L60E and 4L80E, line pressure is routed to the solenoid regulator valve and is regulated into solenoid feed pressure (Figure 2). This valve is also susceptible to side-loading, which has been a major issue with this family of transmissions. Transmission slips, flares and even loss of 4th through 6th Gears are indications that the solenoid regulator valve may be failing.

Figure 2 — Gen. 1 6F35 4th Gear

Oil from the solenoid regulator valve is fed to shift solenoid D. In Gears 4 through 6, shift solenoid D will route pressure to the Low Reverse/4-5-6 regulator valve.  That moves the Low Reverse/4-5-6 regulator valve into position to route line pressure to the clutch control bypass valve. If the solenoid regulator valve wears — in the Gen. 1 6F35, they tend to wear a lot — it may not supply enough oil to shift solenoid D.

This may result in the Low Reverse/4-5-6 regulator valve being out of position and can restrict oil to the 4-5-6 clutch, resulting in bad shifts and potentially burnt clutches. When dealing with transmission slips, erratic shifts, flares or even loss of Gears 4 through 6, it is a good idea to inspect the solenoid regulator valve for damage.

Toyota generally refers to these valves as solenoid modulator valves. In Toyota/Lexus U660/U760 transmissions, the solenoid modulator valve directly supplies oil to the SL solenoid, SLT solenoid, SLU solenoid and the sequence valve. This hardened steel valve supplies several modulating solenoids, so it is prone to high-frequency movements, often resulting in bore wear. It is involved in all shift circuits, and a worn bore or stuck valve can cause solenoid malfunction and shift issues. 

In addition to supplying oil for control of the clutches in the transmission, the Toyota solenoid modulator valve supplies the solenoids involved in torque converter control (Figure 3).

Figure 3 — Toyota/Lexus U760 TCC Apply

The SLU and SL solenoids, respectively, help control the positions of the lockup control valve and lockup relay valve. If the solenoids are not supplied oil correctly, function of the lockup relay and control valves may be affected, and can result in improper lockup control. Premature lockup or TCC shudder and slip may be caused by a faulty solenoid modulator valve.

Knowing your transmission oil circuit is helpful for diagnosing issues. The VW/Audi 09G is unique in regards to solenoid feed modulation. It uses two, nearly identical solenoid modulator valves to regulate oil to various solenoids.  Solenoid modulator “A” supplies oil to solenoids controlling the K2, B1 and K3 circuits, as well as the ON/OFF solenoids N88 and N89, which route oil to several switch/relay valves. Solenoid modulator “B” supplies oil to the TCC solenoid, line pressure mod (EPC) solenoid and solenoid N92, which is responsible for the K1 circuit (Figure 4). 

Figure 4 — Audi/VW 09G K1 Circuit

A common complaint in these units is clunks on downshifts. When the solenoid modulator “B” valve wears, it often results in low solenoid feed pressure. This can cause a slower stroke of the K1 regulator valve, resulting in a slow, out-of-sync system response and a slow reapply of the K1 clutch. The transmission may attempt to adapt and adjust the duty cycle on the N92 solenoid, causing the often-felt clunk. 

As you can see, a faulty AFL valve can be the culprit for a wide range of issues in the transmission and torque converter. Transmission slipping, shift issues and solenoid codes are often a red flag to check the AFL valve. Knowing your transmission’s hydraulic circuit — and solenoid circuits in particular — can be very helpful when identifying the underlying cause. AFL valves are often simple lineups, but very active and important for the overall function of the transmission and torque converter.  

Neal Axelrod-Adams is a Sonnax design engineer. He is a member of the Sonnax TASC Force (Technical Automotive Specialties Committee), a group of recognized industry technical specialists, transmission rebuilders and Sonnax technicians.

You May Also Like

Shift of the shaft: Diagnosing Chrysler 48RE manual shaft issues

The TorqueFlite transmission has been around since mid-to-late 1950s. There have been many changes surrounding the manual shaft and rooster comb through the years. This transmission shaft controls the position of the manual valve that directs oil for the gear ranges, but it also is used for a Reverse light control as well as Park/Neutral

The TorqueFlite transmission has been around since mid-to-late 1950s. There have been many changes surrounding the manual shaft and rooster comb through the years. This transmission shaft controls the position of the manual valve that directs oil for the gear ranges, but it also is used for a Reverse light control as well as Park/Neutral safety control. As it evolved, changes to these safety backup switches caused extra stress against the rooster comb that posed new challenges to the technician. 

Sometimes, a diagnostic code is all you need

With ATSG having the opportunity to help shops solve problems, sometimes we get faced with some real doozies. A shop will call and give us a laundry list of DTCs, leaving us to think someone must have a bulkhead connector unplugged. We then go through the arduous task of deciding which codes prompted other codes

10L80 and 10R80 pump gear differences

You may have seen an article in the August 2023 issue of Transmission Digest called “GM 10L80: A new kind of pump noise,” which goes over how the front cover housing in the 10L80 is fitted with a converter drive gear and idler gear. The idler gear drives the pump’s driven gear, and is press

Shift Pointers: What to do when the 62TE TRS tab breaks

How frustrating it is when on a hot summer day, as you go to open a nice cold can of your drink of choice, and the tab breaks off? You are outside, away from any tools to remedy the problem quickly. It now requires a MacGyver mentality looking around at the resources available to get

Going the extra mile: Proving your transmission repair suspicions

A 2003 Honda Pilot with a five-speed three-shaft transmission came into our shop with a customer concern that the vehicle had no power, and the “D” light was flashing. I first did a scan for codes to see what it came up with, and the scan tool returned four DTCs: P1298 (ELD voltage high), P0135 (H02S

RRfeature-1400

Other Posts

Alto releases friction and steel module for ZF 6HP transmissions

Alto has introduced a new friction and steel module for ZF 6HP series transmissions. The module works with ZF 6HP19/X/A (model years 2004 and on) and ZF 6HP21/X (model years 2007 and on) for ZF, Audi, BMW and Volkswagen vehicles. Related Articles – Transtar to offer recycled engines – Sonnax introduces GM 6L80, 6L90 output

Spotting different 68RFE designs through the years to avoid issues

The Chrysler 68RFE has had several changes through the years. Its four-speed predecessor began with a noisy solenoid pack identified by a black colored pass-through case connector (seen in Figure 1).  Related Articles – Outgrowing the walls: The story of EVT Transmission Parts – Valve body and component suppliers: A comprehensive list – Shift Pointers:

Shift Pointers: Failures caused by incorrect tire sizes

For years ATSG has produced a wide range of issues related to improper tire sizes on vehicles. Even under-inflated tires have been known to cause issues. Problems such as premature failure with an active 4WD transfer case will occur with incorrect tire sizes. Related Articles – Understanding lube flow control valves in Toyota/Lexus UA/UB80 transmissions

Shift-Pointers-Jan-Figure-1-1400
Understanding lube flow control valves in Toyota/Lexus UA/UB80 transmissions

The Toyota/Lexus UA80 and UB80 transmissions first came out in 2017 in Highlanders and Siennas. The UA80 is used in V6 applications, and the UB80 is paired with four-cylinder versions. They have been called Toyota New Global Architecture type transmissions, and alternately referred to as the “Direct Shift 8AT” eight-speed automatic transmission. This transmission was

Tasc-Tip-December-Figure-1---LFC-Valve-OE-Partial-Circuit-Diagram-1400