The Nightmare on Oak Street: A hunt for 4L30E electrical problems - Transmission Digest

The Nightmare on Oak Street: A hunt for 4L30E electrical problems

This story begins with a 4WD 1998 Honda Passport equipped with a 3.2 V6 engine and 4L30E transmission. The shift indicator in the cluster was not functioning correctly and transmission was shifting hard. The shift indicator showed ‘P’ in Park, and ‘1’ in D3, D2, or D1. The indicator didn’t light up in any other gear. It seemed like a straightforward diagnosis since the mode switch (range sensor) has a high failure rate on these vehicles. However, a new OEM mode switch from Honda had been previously installed for this issue with no change, so it was time to start the real work of accurately diagnosing the cause. Little did I know that this project would become “The Nightmare on Oak Street.”

There was no data stream available to view on this vehicle using our trusty Snap-On MT2500 scanner, so some pinpoint testing was the next order of business. To start, I printed out the wire diagrams and familiarized myself with the component and connector locations. This system is a little more complex than others. The mode switch sends information to the PCM as well as the Alarm and Relay Control Unit (ARCU, a.k.a. Multiplex Control Unit). The PCM uses this information to regulate the transmission operation, and the ARCU sends the information to the IP cluster. (See Figure 1).

RR-Tech-December-FIG-1-1400
Figure 1.

First things first: I cleaned the science experiment at the battery terminals. (See Figure 2).

RR-Tech-December-FIG-2-600
Figure 2.

I then went on to check the power and ground circuits. How many times have I skipped these steps, only to get bitten by them later? The PCM was below the center of the dash, under the console. (See Figure 3).

RR-Tech-December-FIG-3-600
Figure 3.

The Alarm and Relay Control Unit was above right kick panel (it was hidden). See Figure 4.

RR-Tech-December-FIG-4-600
Figure 4.

I gained access to both modules for circuit checks. Power is needed at both the Mode Switch and the ARCU (See Figure 5).

RR-Tech-December-FIG-5-300
Figure 5.

Now that I had access for testing, it was time to break out the DVOM. The backup lamps and turn signals worked, which meant that the fuse (shared by the Mode Switch and ARCU) was good. I checked for B+ at the Mode Switch. There was B+ to the Mode Switch, ignition and the ARCU. I checked the ground circuit from the battery to the PCM and the ARCU to. At this point, all that I tested was working well. (See Figures 6 and 7).

RR-Tech-December-FIG-6-600
Figure 6.
RR-Tech-December-FIG-7-200
Figure 7.

With the voltage supply and grounds testing good, it was time to see if I was getting signals from the Mode Switch to the PCM and ARCU. The Mode Switch has four internal switches. Power is supplied to the switch on pin 8, and as the lever is moved it directs power through the internal switches to their assigned circuits, as follows:

  • Pin 8 (light blue): B+ from the backup/turn signal fuse.
  • Pin 2 (white): effective in P, N, 3, L
  • Pin 5 (purple): effective in P, R, 3, 2
  • Pin 6 (gray): effective in R, N, D, 3
  • Pin 7 (orange/black): effective in D, 3, 2, L

When testing each pin, there should be continuity in its respective ranges. I also tested the voltage from the Mode Switch at the PCM and ARCU with them disconnected. Pins 5, 7 and 2 tested okay. Pin 6 tested open in all ranges. Bingo!

It appeared that I had found the problem. Could there be two Mode Switches with the same problem? Remember, this vehicle arrived to us with a new, OEM Mode Switch installed. Could this new switch be bad?

We purchased a new mode switch and installed it on the vehicle. Now the indicator was functioning correctly, and the shifts were normal. We always perform a final road test before the vehicle is delivered to the owner. For the first seven miles all was well, then as I turned down the home stretch, the indicator went blank, and the transmission wouldn’t shift. What happened? Everything was working so well up to that point.

I limped it back to the shop and ran the lever through the ranges. I witnessed the same exact problem as before. What did I miss?

Read more stories in our R&R Tech series here.

I ran through the tests again. Again, open on pin 6. What’s going on? I took the mode switch apart and there it was: a piece of the thin metal used on the circuit board to make the slide connection was missing. The only thing that I could think was that there had to be too many amps on that circuit, which were burning up the circuit on the board.

I used a fused jumper (5-amp fuse) with an ammeter in-line to test the load on pins 5, 6 and 7. Pins 5 and 7 had .012-amp draw. But pin 6 blew my 5-amp in-line fuse. I disconnected the ARCU and replaced the fuse. I blew the fuse again. I disconnected the PCM, and it blew that fuse. It seemed to indicate that I had a short to ground somewhere.

I started the hunt at the Mode Switch. The wiring harness passes by the lower left side of the bellhousing with a shield to protect the harness. I removed the shield and there it was: a shiny piece of copper staring at me. The shield had rubbed through the conduit, tape and finally the insulation, causing the short. (See Figure 8).

RR-Tech-December-FIG-8-1400
Figure 8.

I repaired the wire, taped the harness and installed a new piece of conduit. At the same time, I bent the shield so there were no sharp edges to wear through again. I retested the circuit and installed a new Mode Switch, and this time it passed the 15-mile final road test.

Moving the harness around during the Mode Switch replacement must have been enough to move the bare wire away from the shield for a time. Then after driving, the vibrations moved it back to its original resting place and shorted to ground, repeating the fault.

When I took the Mode Switch off and took it apart, I could only conclude that the printed circuit was acting as a fuse, but the only problem was that it failed with a lot less amperage than what the fuse that powers the circuit is rated for. In the end, the root cause was found, and the issue corrected. The customer was pleased and that’s always what matters the most.

Randy Peterson has worked for Certified Transmission for more than twenty-five years and is an ASE Certified Master Technician, including L-1.

You May Also Like

Going the extra mile: Proving your transmission repair suspicions

A 2003 Honda Pilot with a five-speed three-shaft transmission came into our shop with a customer concern that the vehicle had no power, and the “D” light was flashing. I first did a scan for codes to see what it came up with, and the scan tool returned four DTCs: P1298 (ELD voltage high), P0135 (H02S

RRfeature-1400

A 2003 Honda Pilot with a five-speed three-shaft transmission came into our shop with a customer concern that the vehicle had no power, and the “D” light was flashing. I first did a scan for codes to see what it came up with, and the scan tool returned four DTCs: P1298 (ELD voltage high), P0135 (H02S [S1] heater failure), P0141 (H02S [S2] heater circuit malfunction), P0748 (clutch pressure control solenoid valve “A” failure), and the ubiquitous P0700 (AT system malfunction) code. (See Figure 1). 

Hidden problems: Three tales of electrical issues

In this article, I will discuss some vehicles with electrical issues. These issues were previously addressed by a different shop/tech, but the improper or incomplete repair resulted in these hidden problems that would appear later. Related Articles – Diagnosing Ford 10R60, 10R80 and 10R140 series speed sensor issues – Jatco JF613E transmission quick reference material –

How reading through service bulletins can turn a technician into the customer’s hero

Over the last 28 years of being a technician, I have developed the habit of checking for and reading technical service bulletins at the forefront of the diagnostic process, especially when an unfamiliar vehicle exhibiting blatant or straightforward concerns comes into the shop. I have found many valuable nuggets of information while reading over these

Looking deeper: Telling apart electrical issues and parts issues

We see such a variety of transmission problems these days, and all the electronics involved today certainly have added a whole new crop of potential issues. Even though a significant part of our diagnostic process is geared towards electrical issues, there are still times when the problem is simple and not related to electronics at

RR-Tech-Nov-FIG-1
Sonnax introduces Sure Cure Kit for GM 6L80, 6L90

Sonnax has introduced a Sure Cure kit for rebuilders of GM 6L80/6L90 transmissions. The company says this kit can restore shift quality and repair common TCC trouble areas, offering products to help rebuilders repair worn areas and protect the transmission against future damage. The kit is part no. SC-6L80-6L90. Related Articles – Alto introduces aluminum

Other Posts

Snap-on announces upgrades in diagnostic software release

With its latest diagnostic software release, Snap-on said it has added more location images and larger connector diagrams to its Fast-Track Guided Component Test feature to “give professional automotive technicians increased confidence and certainty in their diagnosis.” Related Articles – American Powertrain introduces new transmission install tool and seal protector – Mayhew introduces 14-piece micro

Snap-on-Announces-Upgrades-in-Latest-Diagnostic-Software-Release
Understanding lube flow control valves in Toyota/Lexus UA/UB80 transmissions

The Toyota/Lexus UA80 and UB80 transmissions first came out in 2017 in Highlanders and Siennas. The UA80 is used in V6 applications, and the UB80 is paired with four-cylinder versions. They have been called Toyota New Global Architecture type transmissions, and alternately referred to as the “Direct Shift 8AT” eight-speed automatic transmission. This transmission was

Tasc-Tip-December-Figure-1---LFC-Valve-OE-Partial-Circuit-Diagram-1400
Sometimes, you should sweat the small stuff

It’s a common phrase: There may have been a time when you worried about something, and someone who knew what you are going through said, “Hey, don’t sweat the small stuff.” Sometimes, this may be good advice. But other times, it may be wise to handle the small stuff before it becomes bigger “stuff.”  Related

Fabricating frictions: Keeping ahead of the curve at Raybestos Powertrain

While the transmission aftermarket is well familiar with Raybestos Powertrain branded friction elements for transmissions and torque converters, most would be impressed to learn the science and efforts that go into creating the product lines. Transmission Digest recently did just that, visiting the manufacturing plant and tech center facilities of the company in Crawfordsville, Indiana.