CVT Success: In-Vehicle Isolation of Common Problems - Transmission Digest

CVT Success: In-Vehicle Isolation of Common Problems

All transmission models have unique problems that are common to that model; Jatco CVT units are no exception. Technicians are facing an uphill battle when it comes to diagnosing and repairing CVTs if they don't have the right information on hand. Knowing what the common issues are and understanding the options available to isolate and fix problems are the keys to CVT success.

CVT Success: In-Vehicle Isolation of Common Problems

TASC Force Tips

Author: Bob Warnke
Subject Matter: Jatco CVT
Issue: Isolate and fix problems

TASC Force Tips

  • Author: Bob Warnke
  • Subject Matter: Jatco CVT
  • Issue: Isolate and fix problems

All transmission models have unique problems that are common to that model; Jatco CVT units are no exception. Technicians are facing an uphill battle when it comes to diagnosing and repairing CVTs if they don’t have the right information on hand. Knowing what the common issues are and understanding the options available to isolate and fix problems are the keys to CVT success.

First, Do No Harm

Without the right information, we end up making assumptions — often incorrect ones. Generally, when unfamiliar with a transmission, we start by searching bulletins and websites for service clues. Sometimes we read a tip and assume that the information matches our complaint. If we are action-oriented and short on time, we might react too quickly and assume that pulling out the unit for repair is best. But too often, assumption takes the long path — to the wrong conclusion.

The following are examples of “runaway” assumptions:

  • After pulling the pan for routine maintenance service on a unit with 40,000 miles, the technician finds the magnets heavily loaded when compared to a typical automatic. It looks like the unit is well on its way to failing.
  • After cleaning the magnets and refilling the unit with the correct CVT fluid, the car is test driven around the block. It works well and is ready for delivery.
  • Two days after picking up the car, the owner comes back claiming the vehicle has excess noise and seems to slip. Because of the material previously found on the magnets, the decision is made to pull the transmission.

Hold on, action-oriented enthusiast. Not so fast! If you want to be CVT-successful, you’ve got to know why these assumptions are incorrect. Once you have that information, you can get down to the business of learning some of the common CVT problems and their causes, all without removing the unit from the vehicle.

The first false assumption has to do with the magnets. A certain amount of magnetic fuzz is normal in a CVT inspected with 40 to 50 thousand miles. The push-belt links create fretting where they contact the sheave/pulley surface, most of which is generated during break-in. But in noting this material is normal, consider that much of that ferrous fuzz has been circulating throughout the valve body. It has embedded into the solenoids and stuck onto the speed sensors — all of which are electromagnets — while also scrubbing away at the aluminum valve bores. This means that the fuzz is indeed normal, but so is low-mileage valve bore wear.

The second incorrect assumption was that test driving the vehicle around the block after fluid exchange was sufficient. These units use a thermal element in the water-to-oil (WTO) cooler. The fluid must reach approximately 150°F for the element to open and flow oil to the cooler. Once it opens, air is purged, leaving the sump level low. Low fluid causes chain slip and noise on acceleration. Driving it in this low-fluid condition will end up damaging the unit and requiring a tow-in.

The third erroneous assumption was that the transmission needs to be pulled out. As we’ve just seen, committing to pulling the unit before verifying correct fluid level would be a mistake. There is no dipstick, and guessing what drained from the pan is not sufficient. You can buy a dipstick from Chrysler or aftermarket sources, or you can make your own. The transmission fill tube has an internal stop at the bottom. You can make a dipstick and place marks in 10mm increments starting at the bottom and moving upward. At 75°F, minimum/maximum fluid level must be 26mm to 38mm. At 180° F, minimum/maximum fluid level must be 38mm to 46mm.

Isolating Common Problems

We’ve just identified some non-issues, but what about when we run into an actual problem? Let’s look at some information that will help isolate those problems once they are presented in the shop. Charts and diagrams (figures 1-6) show the pressure specifications, tap locations and flow testing information you’ll need for diagnosis.

As you can see, there are some very high pressures here compared to regular automatics. For pressure testing, use a gauge with a minimum of 1,000 psi (7,000 kPa). A typical JATCO port adapter is required. If you don’t have one, make one by pre-drilling a center hole into a case plug, then brazing to a 1/8″ pipe.

It’s easy to identify the pressure tap locations (Figure 6). Most of the taps and the fill plug face the front, toward the radiator and just below the input speed sensor. They form a four-point circle, with the primary pulley pressure tap in the middle. The reverse brake tap is near the shift shaft on top and the secondary pulley tap is on the firewall side. Note: this configuration is specific to JF011E; tap locations differ on other CVT units. Consult available reference material for tap locations on other models.

Let’s take a look at how we can use this information to isolate some common CVT problems. Remember that, because of the high pressures involved, it is suggested you hang the gauge outside the vehicle rather than inside.

In your quest to isolate these concerns, be aware that the converter clutch does not have a ramped apply. It locks dependent on engine rpm of about 1,500 on acceleration. The TCC does not unlock on deceleration until about 10 mph. In contrast, a typical automatic usually applies after a 1-2/2-3 shift and has controlled slip, which is required in those units for drivability and fuel efficiency.

The following represent the most common complaints on CVT units and areas to investigate:

  • Chatter, noise or judder on acceleration
  • Check line pressure, TCC release, Forward clutch and primary/secondary pulley pressure, as well as bearings.
  • Bearing failure is widespread. Usually with bearing failure, fluid level and pressures will be okay, but a whining noise will be evident on acceleration.

To determine which bearing is making noise, drive at a constant speed (where the noise is strongest) and shift manually to a lower ratio — this makes engine speed increase. If the noise goes up with engine speed, the primary pulley bearing has failed. If the noise stays constant with rpm increase, the secondary or final drive bearing is the culprit. Sometimes, bearing noise can be accompanied by low secondary pulley pressure, because if that bearing is damaged, the shaft can run out-of-line and damage the pulley’s input seal. Replacement bearings are readily available in the aftermarket.

  • RPM surge/stumble at idle, stall on engagement: Check forward clutch pressure. Check cooler flow and/or TCC apply/release pressure.
  • No TCC apply or RPM change at 1,500 rpm: Check TCC apply and release pressure.
  • Hydraulic noise at idle: Check TCC release pressure.

When encountering low pressure, focus your inspection on the valve body. For each pressure circuit that is out of specification, vacuum test the associated bore. For instance, if you have low line pressure, you would move to vacuum test the primary pressure regulator valve/bore. If you have low primary pulley pressure, vacuum test the primary pulley control valve/bore, etc. If all pressures are low, suspect the pump flow control valve. In fact, this valve notoriously wears out on most units; it would be smart to replace it with an oversized version on every repair to prevent possible warranty comebacks. Failing flow control valves also will often cause codes to set such as ratio, pressure sensor and/or solenoid “A” or “B” codes.

As you can see, it is possible to use available information and test equipment to diagnose many CVT problems without removing the transmission. When armed with solid service information, an understanding of common problems and how to identify their causes, CVTs can be a good source of pain-free revenue for any transmission shop.

You May Also Like

Sherlock Holmes Approach to an AB60 No-Move Situation

The effectiveness in diagnosing automatic transmission malfunctions is an art form. Although there are similarities among the wide varieties of transmissions on the road, each transmission has its own peculiarities. Aside from having mechanical, hydraulic, and electrical hardware systems to contend with, software/programming issues and various vehicle platforms make diagnostics much more difficult.  Using scopes provides

ab60

The effectiveness in diagnosing automatic transmission malfunctions is an art form. Although there are similarities among the wide varieties of transmissions on the road, each transmission has its own peculiarities. Aside from having mechanical, hydraulic, and electrical hardware systems to contend with, software/programming issues and various vehicle platforms make diagnostics much more difficult. 

GM 6T40 Pump Identification Guide

The 6T40 was introduced in 2008 for General Motors front-wheel-drive cars in the Chevrolet Malibu and has gone through several changes throughout its three generations, specifically in the pump area. The 6T40 is closely related to the more lightweight 6T30 and the heavier duty 6T45 and 6T50. Generation one started phasing out during the 2012

Seeing the Forest AND the Trees

They say that the proverbial phrase “I couldn’t see the forest for the trees” means that a person or organization cannot see the big picture because it focuses too much on the details. Related Articles – 4L60E Harsh 1-2 Shift – TASC Force Tips: Diagnosing 8L45 & 8L90 Shift Complaints – TASC Force Tips: Hydraulics

The Manifold Pipeway

The Honda six-speed transmission has been on the bench of many specialty shops for one reason or another (figure 1). But, for those of you who have yet to lay your hands on one, mounted on the upper side of the unit is one of the largest, if not the largest solenoid and pressure switch

8L90 Vacuum Testing

Below are the diagrams for vacuum testing GM 8L90 transmissions. Note: OE valves are shown in rest position and should be tested in rest position unless otherwise indicated. Test locations are pointed to with an arrow. Springs are not shown for visual clarity. A low vacuum reading indicates wear. For specific vacuum test information, refer

Other Posts

Shift of the shaft: Diagnosing Chrysler 48RE manual shaft issues

The TorqueFlite transmission has been around since mid-to-late 1950s. There have been many changes surrounding the manual shaft and rooster comb through the years. This transmission shaft controls the position of the manual valve that directs oil for the gear ranges, but it also is used for a Reverse light control as well as Park/Neutral

Diagnosing Ford 10R60, 10R80 and 10R140 series speed sensor issues

Ford 10-speed 10R series transmissions utilize four two-wire, Hall-effect sensors — TSS, ISSA, ISSB and OSS — for providing speed signals to PCM or TCM. They are supplied nine volts by a PCM or TCM and assist in the control of clutch apply/release timing that is used in determining shift quality, including TCC. Related Articles

Easy TH400, 4L80-E reverse servo setup: Craft your own tool

While not as sensitive as some shifting bands, the Reverse band adjustment on a TH400 or 4L80-E transmission is critical, and failure to get it right has tripped up even the best builders. There is nothing worse than getting the transmission installed, putting it in Reverse and then not going anywhere or having no engine

Understanding lube flow control valves in Toyota/Lexus UA/UB80 transmissions

The Toyota/Lexus UA80 and UB80 transmissions first came out in 2017 in Highlanders and Siennas. The UA80 is used in V6 applications, and the UB80 is paired with four-cylinder versions. They have been called Toyota New Global Architecture type transmissions, and alternately referred to as the “Direct Shift 8AT” eight-speed automatic transmission. This transmission was

Tasc-Tip-December-Figure-1---LFC-Valve-OE-Partial-Circuit-Diagram-1400