Chrysler 948TE: It’s a doggy dog transmission - Transmission Digest

Chrysler 948TE: It’s a doggy dog transmission

The Chrysler 948TE transmission (seen in the above image) stands out for its unique use of two dog clutches: dog clutch A and dog clutch F. Dog clutch A (Figure 1) is used to drive an annulus/sun gear while dog clutch F (Figure 2) is used to hold a double sun gear stationary.

Figure-1-Tech-Speak-August
Figure 1.
Figure-2-Tech-Speak-August
Figure 2.

In a manual transmission, what’s called “dog teeth” are integral to a gear. A brass blocker ring is used to synchronize the slider into the dog teeth for a smooth transition into that gear without grinding. But the 948TE does not have a blocker ring to assist in the synchronizing of the dog clutch. The computer needs to do this work controlling the speed of these components during the application so that a smooth transition occurs. One of the ways this is accomplished is for the computer to monitor the position of the dog clutch; it does this with the use of a pressure sensor on the valve body (Figure 3).

Figure-3-Tech-Speak-August
Figure 3.

Dog clutch A uses a sensing valve located inside a double action piston to provide its position to the pressure sensor, while dog clutch F does not; it utilizes a much simpler sensing system by using a bleed hole in the piston. Dog clutch A being a bit more involved lends towards it not functioning correctly. And when it does malfunction, it can cause an intermittent loss of forward or a lack of any forward at all.

Dog clutch A is a sleeve with both internal and external splines. The internal splines are permanently splined to the turbine shaft. It is attached to a double action piston inside the turbine shaft with a roll pin (Figure 4).

Figure-4-Tech-Speak-August
Figure 4.

There is a slot in the turbine shaft this roll pin goes through, allowing the piston to engage or disengage the dog clutch. Inside this double action piston is a sensing valve (Figure 5).

Figure-5-Tech-Speak-August
Figure 5.

This sensing valve is held into the piston with a screw and cover plate. One end of this sensing valve is a 0.048” orifice while at the opposite end is a 0.076” orifice (Figure 6).

Figure-6-Tech-Speak-August
Figure 6.

The leakage that passes through this valve as the piston is being applied is approximately 29 PSI and is monitored at the pressure sensor. Once the piston has fully engaged or disengaged the dog clutch, the end of this sensing valve is blocked and the pressure at the sensor goes to 0 PSI. This is how the computer knows when the piston begins moving the dog clutch sleeve, and when it has traveled its complete distance. To illustrate this process, Figure 7 shows the beginning of how the dog clutch sleeve is released.

Figure-7-Tech-Speak-August
Figure 7.

As pressure is supplied past the sealing rings on the shaft, it travels down the center of the shaft where it enters the piston chamber. As it pushes the piston towards the release position, pressure also passes through the center of the sensing valve metering this oil to the pressure sensor on the valve body. Approximately 29 PSI is present at the sensor during this event. When the piston reaches its full travel where the dog clutch sleeve is released, the end of sensing valve seals against a retaining cap in the shaft (Figure 8).

Figure-8-Tech-Speak-August
Figure 8.

This drops the pressure at the sensor to 0 PSI, informing the computer that this shift event has been completed. The same process occurs when engaging the dog clutch sleeve. Pressure is supplied to the end of the shaft through the inside opening of the retaining cap (Figure 9).

Figure-9-Tech-Speak-August
Figure 9.

As the piston is moved towards the engagement position, pressure is metered through the sensing valve, past the sealing rings on the shaft and into the pressure sensor on the valve body. Once the dog clutch sleeve is fully engaged, the end of the sensor valve is blocked and pressure at the sensor will drop to 0 PSI (Figure 10).

Figure-10-Tech-Speak-August
Figure 10.

To see how this is represented in typical hydraulics, Figure 11 shows dog clutch A in the released position while Figure 12 shows it in the applied position. Dog clutch A is in the upper left corner while dog clutch F is in the upper right corner. Below dog clutch F you can locate the pressure sensor.

Figure-11-Tech-Speak-August
Figure 11.
Figure-12-Tech-Speak-August
Figure 12.

As you may have noticed by looking at Figure 4 previously, the dog clutch A sleeve has damaged splines as well as being overheated. This, or something worse, is what you may encounter when this system fails. In the dog clutch you see in Figure 4, the little screw that holds the sensing valve retainer plate to the piston was found to be loose. Sometimes this screw backs out enough to the point that its head snaps off. This hampers the full travel of the piston, keeping the end of sensing valve from being sealed off. When this occurs, a continual flow of pressure is supplied to the pressure sensor. The result is erratic sensor readings, erratic engagement of the dog clutch, and an intermittent or complete loss of forward movement—not to mention that some grinding will take place to add a little sparkle to the fluid.

As mentioned earlier, dog clutch F is a much simpler design. The double action piston and cover is located within the bearing support assembly as seen in Figure 13.

Figure-13-Tech-Speak-August
Figure 13.

Built into the double action piston is a sensing hole rather than having a valve (Figures 14 and 15).

Figure-14-Tech-Speak-August
Figure 14.
Figure-15-Tech-Speak-August
Figure 15.

As the piston moves, it provides approximately 29 PSI to the pressure sensor. When the piston has reached its full travel, the hole is closed off by the cover on the top side and the housing on the bottom side. For this system to malfunction, piston and cover seals need to be compromised or clogging of the sensing hole would have to occur—and I have heard of neither of these things happening as of now. But one thing is certain: this is truly a doggy dog transmission.

Read more stories from our Technically Speaking column series here.

You May Also Like

Going the extra mile: Proving your transmission repair suspicions

A 2003 Honda Pilot with a five-speed three-shaft transmission came into our shop with a customer concern that the vehicle had no power, and the “D” light was flashing. I first did a scan for codes to see what it came up with, and the scan tool returned four DTCs: P1298 (ELD voltage high), P0135 (H02S

RRfeature-1400

A 2003 Honda Pilot with a five-speed three-shaft transmission came into our shop with a customer concern that the vehicle had no power, and the “D” light was flashing. I first did a scan for codes to see what it came up with, and the scan tool returned four DTCs: P1298 (ELD voltage high), P0135 (H02S [S1] heater failure), P0141 (H02S [S2] heater circuit malfunction), P0748 (clutch pressure control solenoid valve “A” failure), and the ubiquitous P0700 (AT system malfunction) code. (See Figure 1). 

Diagnosing Ford 10R60, 10R80 and 10R140 series speed sensor issues

Ford 10-speed 10R series transmissions utilize four two-wire, Hall-effect sensors — TSS, ISSA2, ISSAB and OSS — for providing speed signals to PCM or TCM. They are supplied nine volts by a PCM or TCM and assist in the control of clutch apply/release timing that is used in determining shift quality, including TCC. Related Articles

Jatco JF613E transmission quick reference material

For those working on the Jatco JR613E transmission, a widespread transmission with plenty of applications, the following should be a helpful guide. Related Articles – Hidden problems: Three tales of electrical issues – Easy TH400, 4L80-E reverse servo setup: Craft your own tool – Outgrowing the walls: The story of EVT Transmission Parts Domestic and

Easy TH400, 4L80-E reverse servo setup: Craft your own tool

While not as sensitive as some shifting bands, the Reverse band adjustment on a TH400 or 4L80-E transmission is critical, and failure to get it right has tripped up even the best builders. There is nothing worse than getting the transmission installed, putting it in Reverse and then not going anywhere or having no engine

Spotting different 68RFE designs through the years to avoid issues

The Chrysler 68RFE has had several changes through the years. Its four-speed predecessor began with a noisy solenoid pack identified by a black colored pass-through case connector (seen in Figure 1).  Related Articles – Understanding lube flow control valves in Toyota/Lexus UA/UB80 transmissions – How reading through service bulletins can turn a technician into the

Other Posts

Sonnax introduces heavy-duty ‘A’ clutch backing plate

Sonnax has introduced a new heavy duty “A” clutch backing plate (part no. 35577-45) for Chrysler 845RE and 850RE, and ZF 8HP45, 8HP50 and 8HP51 transmissions. Sonnax says that this plate can eliminate the flexing/bowing of the clutch pack that leads to comebacks in these transmissions, and recommends installing them in units that have not

Raybestos offers new 10-speed performance GPZ Torqkits

Raybestos announced that it is offering new Clutch Torqkits for Ford 10-speed transmissions. Related Articles – Mayhew introduces 14-piece micro hand tool set – Aircat 1⁄4-in. mini die grinder released – Sonnax highlights Chrysler RFE Sure Cure kits There are three part numbers for the D (pictured above), E, and F Clutch Torqkit, respectively. They are drop-in

Shift Pointers: Focused DTCs

On occasions when a vehicle’s computer system detects an error, it can set an array of diagnostic trouble codes. The variety and quantity of them require the ability to diagnose diagnostic codes, so it’s nice when codes set that point directly to the problem.  Related Articles – Fabricating frictions: Keeping ahead of the curve at

Manual clutch repair and diagnostics

Manual gearboxes are relatively trouble-free and long-lived, provided that they are not abused too severely. The clutch, however, is a wear component. With every shift, the clutch must be disengaged and engaged. Stop-and-go driving in heavy traffic is especially hard on a clutch because the driver is always riding the clutch pedal. After millions of

Manual-Transmission